✅Как понять, какие задачи можно эффективно объединить в мультизадачную модель
Ключевой критерий — наличие общей структуры или схожих признаков между задачами.
🔍Хорошие кандидаты для мультизадачного обучения: — Задачи, основанные на одинаковых входных данных (например, текст, изображения). — Задачи, требующие похожего понимания структуры (например, синтаксического или семантического анализа в NLP). — Задачи, где одна может обогащать представление для другой (например, часть речи ↔️ определение сущностей).
📌Пример: В NLP можно объединить задачи классификации тональности, распознавания именованных сущностей и анализа зависимостей — они все используют текст и извлекают структурированную информацию.
🚫Плохие кандидаты — риск негативного переноса: — Задачи с разными типами данных и отдельными признаковыми пространствами (например, изображение + аудио без общего контекста). — Задачи с конфликтующими целями (например, одна требует обобщения, другая — запоминания деталей).
На что ещё обратить внимание: ➡️Размер и баланс подзадач — мелкие задачи могут быть подавлены. ➡️Возможность общей архитектуры (shared encoder + task-specific heads). ➡️Наличие метрик для оценки взаимного влияния задач.
✅Как понять, какие задачи можно эффективно объединить в мультизадачную модель
Ключевой критерий — наличие общей структуры или схожих признаков между задачами.
🔍Хорошие кандидаты для мультизадачного обучения: — Задачи, основанные на одинаковых входных данных (например, текст, изображения). — Задачи, требующие похожего понимания структуры (например, синтаксического или семантического анализа в NLP). — Задачи, где одна может обогащать представление для другой (например, часть речи ↔️ определение сущностей).
📌Пример: В NLP можно объединить задачи классификации тональности, распознавания именованных сущностей и анализа зависимостей — они все используют текст и извлекают структурированную информацию.
🚫Плохие кандидаты — риск негативного переноса: — Задачи с разными типами данных и отдельными признаковыми пространствами (например, изображение + аудио без общего контекста). — Задачи с конфликтующими целями (например, одна требует обобщения, другая — запоминания деталей).
На что ещё обратить внимание: ➡️Размер и баланс подзадач — мелкие задачи могут быть подавлены. ➡️Возможность общей архитектуры (shared encoder + task-specific heads). ➡️Наличие метрик для оценки взаимного влияния задач.
Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”
Библиотека собеса по Data Science | вопросы с собеседований from jp